Comparative mutant analyses reveal a novel mechanism of ARF regulation in land plants
Artículo
Te invitamos a leer el artículo "Comparative mutant analyses reveal a novel mechanism of ARF regulation in land plants" publicado en Nature, a cargo de la profesora investigadora María Jazmín Abraham-Juárez de la Unidad de Genómica Avanzada (UGA) del Cinvestav y su equipo de trabajo.
Autores:Michael J. Prigge / Nicholas Morffy / Amber de Neve / Whitnie Szutu / María Jazmín Abraham-Juárez / Trisha McAllister / Heather Jones / Kjel Johnson / Nicole Do / Meirav Lavy / Sarah Hake / Lucia C. Strader / Mark Estelle / Annis E. Richardson
-
Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
-
Department of Biology, Duke University, Durham, NC, USA
-
USDA Plant Gene Expression Center, Albany, CA, USA
-
Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
-
Unidad de Genomica Avanzada (UGA), Centro de Investigacion y de Estudios Avanzados (Cinvestav), Irapuato, Mexico
-
Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
Felicitamos al estudiantado y profesorado que contribuyeron en esta investigación por su arduo trabajo.
Summary:
The plant hormone auxin regulates a wide variety of transcriptional responses depending on the cell type, environment and species. How this diversity is achieved may be related to the specific complement of auxin-signalling components in each cell. The levels of activators (class-A AUXIN RESPONSE FACTORS) and repressors (class-B ARFs) are particularly important. Tight regulation of ARF protein levels is probably key in determining this balance. Through comparative analysis of novel, dominant mutants in maize and the moss Physcomitrium patens, we have discovered a ~500-million-year-old mechanism of class-B ARF protein-level regulation mediated by proteasome degradation, important in determining cell fate decisions across land plants. Thus, our results add a key piece to the puzzle of how auxin regulates plant development.