M. en C. José Luis Flores Garcilazo

Time Series Forecasting with Missing Data Using Generative Adversarial Networks and Bayesian Inference

This paper tackles the challenge of time series forecasting in the presence of missing data. Traditional methods often struggle with such data, which leads to inaccurate predictions. We propose a novel framework that combines the strengths of Generative Adversarial Networks (GANs) and Bayesian inference. The framework utilizes a Conditional GAN (C-GAN) to realistically impute missing values in the time series data. Subsequently, Bayesian inference is employed to quantify the uncertainty associated with the forecasts due to the missing data. This combined approach improves the robustness and reliability of forecasting compared to traditional methods. The effectiveness of our proposed method is evaluated on a real-world dataset of air pollution data from Mexico City. The results demonstrate the framework’s capability to handle missing data and achieve improved forecasting accuracy.

Keywords
Deep Learning, Time series; Missing Data; Neural Networks; GAN; Bayesian.

Autores:

Xiaoou Li.

Revista

MDPI.

DOI:10.3390/info15040222.

Artículo anterior LightMAC: Fork it and Make it faster
Siguiente artículo ¿Sirve el cannabinol para el dolor?
Print
383 Califica este artículo:
Sin calificación
Please login or register to post comments.
CONTÁCTENOS

Logo Cinvestav

Av. Instituto Politécnico Nacional 2508
Col. San Pedro Zacatenco, Alcaldía Gustavo A. Madero
Ciudad de México, C.P. 07360
Apartado Postal: 14-740, 07000 Ciudad de México

Tel. +52 (55) 5747 3800

Cinvestav © 2025
05/03/2025 12:40:47 p. m.